Robustness of instability of two-layer quasi-geostrophic equations
نویسندگان
چکیده
منابع مشابه
Synchronization and chaos control in a periodically forced quasi-geostrophic two-layer model of baroclinic instability
Cyclic forcing on many timescales is believed to have a significant effect on various quasi-periodic, geophysical phenomena such as El Niño, the Quasi-Biennial Oscillation, and glacial cycles. This variability has been investigated by numerous previous workers, in models ranging from simple energy balance constructions to full general circulation models. We present a numerical study in which pe...
متن کاملPrecipitating Quasi-Geostrophic Equations and Potential Vorticity
Precipitating versions of the quasi-geostrophic (QG) equations are derived systematically, starting from the equations of a cloud-resolving model. The presence of phase changes of water from vapor to liquid and vice versa leads to important differences from the dry QG case. The precipitating QG (PQG) equations, in their simplest form, have two variables to describe the full system: a potential ...
متن کاملDissipative quasi - geostrophic equations with initial data
In this paper, we study the solutions of the initial-value problem (IVP) for the quasi-geostrophic equations, namely ∂tθ + u.∇θ + κ (−∆) θ = 0, on R × ]0,+∞[ , θ (x, 0) = θ0(x), x ∈ R. Our goal is to establish the existence and uniqueness of regulars solutions for the two-dimentional dissipative quasi-geostrophic equation with initial data in a Sobolev space H satisfying suitable conditions wit...
متن کاملFinite Elements for the Quasi-Geostrophic Equations of the Ocean
The quasi-geostrophic equations (QGE) are usually discretized in space by the finite difference method. The finite element (FE) method, however, offers several advantages over the finite difference method, such as the easy treatment of complex boundaries and a natural treatment of boundary conditions [61]. Despite these advantages, there are relatively few papers that consider the FE method app...
متن کاملChaotic response of the 2D semi-geostrophic and 3D quasi-geostrophic equations to gentle periodic forcing
Symmetries and Hamiltonian structure are combined with Melnikov’s method to show a set of exact solutions to the 2D semi-geostrophic equations in an elliptical tank respond chaotically to gentle periodic forcing of the domain eccentricity (or of the potential vorticity, for that matter) which are sinusoidal in time with nearly any period. A similar approach confirms the chaotic response of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2014
ISSN: 1847-120X
DOI: 10.7153/dea-06-15